An orthogonal metabolic framework for one-carbon utilization

Metabolic engineering often entails concurrent engineering of substrate utilization, central metabolism and product synthesis pathways, inevitably creating interdependency with native metabolism. Here we report an alternative approach using synthetic pathways for C1 bioconversion that generate multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature metabolism 2021-10, Vol.3 (10), p.1385-1399
Hauptverfasser: Chou, Alexander, Lee, Seung Hwan, Zhu, Fayin, Clomburg, James M., Gonzalez, Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metabolic engineering often entails concurrent engineering of substrate utilization, central metabolism and product synthesis pathways, inevitably creating interdependency with native metabolism. Here we report an alternative approach using synthetic pathways for C1 bioconversion that generate multicarbon products directly from C1 units and hence are orthogonal to the host metabolic network. The engineered pathways are based on formyl-CoA elongation (FORCE) reactions catalysed by the enzyme 2-hydroxyacyl-CoA lyase. We use thermodynamic and stoichiometric analyses to evaluate FORCE pathway variants, including aldose elongation, α-reduction and aldehyde elongation. Promising variants were prototyped in vitro and in vivo using the non-methylotrophic bacterium Escherichia coli . We demonstrate the conversion of formate, formaldehyde and methanol into various products including glycolate, ethylene glycol, ethanol and glycerate. FORCE pathways also have the potential to be integrated with the host metabolism for synthetic methylotrophy by the production of native growth substrates as demonstrated in a two-strain co-culture system. Chou, Lee and Zhu et al. describe a synthetic metabolic pathway for C1 compound utilization using formate, formaldehyde and methanol as substrates.
ISSN:2522-5812
2522-5812
DOI:10.1038/s42255-021-00453-0