Unlocking Electrostrain in Plastically Deformed Barium Titanate

Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d *) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-10, p.e2413713
Hauptverfasser: Zhuo, Fangping, Wang, Bo, Cheng, Long, Zatterin, Edoardo, Jiang, Tianshu, Ni, Fan, Breckner, Patrick, Li, Yan, Guiblin, Nicolas, Isaia, Daniel, Luo, Nengneng, Fulanovic, Lovro, Molina-Luna, Leopoldo, Dkhil, Brahim, Chen, Long-Qing, Rödel, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d *) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100} dislocations is proposed. This dislocation engineering yields an intrinsic lock-in steady-state electrostrain of 0.69% at a low field of 10 kV cm without external stress and an output strain energy density of 5.24 J cm in single-crystal BaTiO , outperforming the benchmark piezoceramics and relaxor ferroelectric single-crystals. Additionally, applying a compression stress of 6 MPa fully unlocks electrostrains exceeding 1%, yielding a remarkable d * value over 10 000 pm V and achieving a record-high strain energy density of 11.67 J cm . Optical and transmission electron microscopy, paired with laboratory and synchrotron X-ray diffraction, is employed to rationalize the observed electrostrain. Phase-field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findings present an effective and sustainable strategy for developing high-performance, lead-free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies.
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202413713