Controlled patterning of crystalline domains by frontal polymerization

Materials with hierarchical architectures that combine soft and hard material domains with coalesced interfaces possess superior properties compared with their homogeneous counterparts 1 – 4 . These architectures in synthetic materials have been achieved through deterministic manufacturing strategie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-10, Vol.634 (8032), p.85-90
Hauptverfasser: Paul, Justine E., Gao, Yuan, Go, Yoo Kyung, Rodriguez Koett, Luis E., Sharma, Anisha, Chen, Manxin, Lessard, Jacob J., Topkaya, Tolga, Leal, Cecilia, Moore, Jeffrey S., Geubelle, Philippe H., Sottos, Nancy R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Materials with hierarchical architectures that combine soft and hard material domains with coalesced interfaces possess superior properties compared with their homogeneous counterparts 1 – 4 . These architectures in synthetic materials have been achieved through deterministic manufacturing strategies such as 3D printing, which require an a priori design and active intervention throughout the process to achieve architectures spanning multiple length scales 5 – 9 . Here we harness frontal polymerization spin mode dynamics to autonomously fabricate patterned crystalline domains in poly(cyclooctadiene) with multiscale organization. This rapid, dissipative processing method leads to the formation of amorphous and semi-crystalline domains emerging from the internal interfaces generated between the solid polymer and the propagating cure front. The size, spacing and arrangement of the domains are controlled by the interplay between the reaction kinetics, thermochemistry and boundary conditions. Small perturbations in the fabrication conditions reproducibly lead to remarkable changes in the patterned microstructure and the resulting strength, elastic modulus and toughness of the polymer. This ability to control mechanical properties and performance solely through the initial conditions and the mode of front propagation represents a marked advancement in the design and manufacturing of advanced multiscale materials. Frontal polymerization spin mode dynamics is used to autonomously fabricate patterned crystalline domains in poly(cyclooctadiene) with multiscale organization.
ISSN:0028-0836
1476-4687
1476-4687
DOI:10.1038/s41586-024-07951-7