Power-Law Entanglement and Hilbert Space Fragmentation in Nonreciprocal Quantum Circuits
Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-08, Vol.133 (7), p.070401, Article 070401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical agent. In our example the circuit is represented by a Majorana quantum chain controlled by a classical N-state Potts chain undergoing pair flips. The local orientation of the classical spins controls whether randomly drawn local measurements on the quantum chain are allowed or not. This imposes a dynamical kinetic constraint on the entanglement growth, described by the transfer matrix of an N-colored loop model. It yields an equivalent description of the circuit by an SU(N)-symmetric Temperley-Lieb Hamiltonian or by a kinetically constrained surface growth model for an N-component height field. For N=2, we find a diffusive growth of the half-chain entanglement toward a stationary profile S(L)∼L^{1/2} for L sites. For N≥3, the kinetic constraints impose Hilbert space fragmentation, yielding subdiffusive growth toward S(L)∼L^{0.57}. This showcases how the control by a classical dynamical agent can enrich the entanglement dynamics in quantum circuits, paving a route toward novel entanglement dynamics in nonreciprocal hybrid circuit architectures. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.133.070401 |