High strain-rate strength response of single crystal tantalum through in-situ hole closure imaging experiments
The properties of crystalline materials often depend on directionality and operating conditions. Specifically, the strength of materials can depend anisotropically on crystal direction and the loading condition. To probe these effects, a preliminary series of high strain-rate (>105/s) strength pl...
Gespeichert in:
Veröffentlicht in: | Materialia 2024-09, Vol.37, p.102219, Article 102219 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The properties of crystalline materials often depend on directionality and operating conditions. Specifically, the strength of materials can depend anisotropically on crystal direction and the loading condition. To probe these effects, a preliminary series of high strain-rate (>105/s) strength plate-impact hole closure experiments were performed on high purity single crystal tantalum cubes. The orientation of the single crystals with respect to impact/loading were varied to provide data to inform crystal plasticity modeling efforts. The experiments consist of in-situ high-resolution X-ray radiographic imaging of the hole collapse under dynamic compression conditions to infer the material strength via its resistance to closure at increasing levels of plastic strain. The experiments are compared against hydrocode simulation predictions. A comparison with simple elastic perfectly plastic strength model predictions is presented to elucidate the response of the different crystal orientations at high strain-rate and large plastic strains.
[Display omitted] |
---|---|
ISSN: | 2589-1529 2589-1529 |
DOI: | 10.1016/j.mtla.2024.102219 |