Encoding of linear kinetic plasma problems in quantum circuits via data compression
We propose an algorithm for encoding linear kinetic plasma problems in quantum circuits. The focus is on modelling electrostatic linear waves in a one-dimensional Maxwellian electron plasma. The waves are described by the linearized Vlasov–Ampère system with a spatially localized external current th...
Gespeichert in:
Veröffentlicht in: | Journal of plasma physics 2024-09, Vol.90 (4), Article 805900401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose an algorithm for encoding linear kinetic plasma problems in quantum circuits. The focus is on modelling electrostatic linear waves in a one-dimensional Maxwellian electron plasma. The waves are described by the linearized Vlasov–Ampère system with a spatially localized external current that drives plasma oscillations. This system is formulated as a boundary-value problem and cast in the form of a linear vector equation $\boldsymbol {A}{\boldsymbol{\psi} } = \boldsymbol {b}$ to be solved by using the quantum signal processing algorithm. The latter requires encoding of matrix $\boldsymbol {A}$ in a quantum circuit as a sub-block of a unitary matrix. We propose how to encode $\boldsymbol {A}$ in a circuit in a compressed form and discuss how the resulting circuit scales with the problem size and the desired precision. |
---|---|
ISSN: | 0022-3778 1469-7807 |
DOI: | 10.1017/S0022377824000795 |