Larmor power limit for cyclotron radiation of relativistic particles in a waveguide
Abstract Cyclotron radiation emission spectroscopy (CRES) is a modern technique for high-precision energy spectroscopy, in which the energy of a charged particle in a magnetic field is measured via the frequency of the emitted cyclotron radiation. The He6-CRES collaboration aims to use CRES to probe...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2024-08, Vol.26 (8) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Cyclotron radiation emission spectroscopy (CRES) is a modern technique for high-precision energy spectroscopy, in which the energy of a charged particle in a magnetic field is measured via the frequency of the emitted cyclotron radiation. The He6-CRES collaboration aims to use CRES to probe beyond the standard model physics at the TeV scale by performing high-resolution and low-background beta-decay spectroscopy of
6
He and
19
Ne. Having demonstrated the first observation of individual, high-energy (0.1 -- 2.5 MeV) positrons and electrons via their cyclotron radiation, the experiment provides a novel window into the radiation of relativistic charged particles in a waveguide via the time-derivative (slope) of the cyclotron radiation frequency, df
c
/dt. We show that analytic predictions for the total cyclotron radiation power emitted by a charged particle in circular and rectangular waveguides are approximately consistent with the Larmor formula, each scaling with the Lorentz factor of the underlying e
±
as γ
4
. This hypothesis is corroborated with experimental CRES slope data. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ad6d85 |