Validation of a Tapered Impact Damper for Traffic Signal Structure Vibrations Using the Method of Harmonic Balance

Significant vibration amplitudes and cycles can be produced when traffic signal structures with low inherent damping are excited near one of their natural frequencies. For the mitigation of wind-induced vibrations, dynamic vibration absorbers coupled to the structure are often used. Here, this resea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental techniques (Westport, Conn.) Conn.), 2024-09
Hauptverfasser: Ganci, C., Kuether, R., Hurlebaus, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significant vibration amplitudes and cycles can be produced when traffic signal structures with low inherent damping are excited near one of their natural frequencies. For the mitigation of wind-induced vibrations, dynamic vibration absorbers coupled to the structure are often used. Here, this research investigates the performance of a tapered impact damper, consisting of a hanging spring-mass oscillator inside a housing capable of reducing vibration amplitude over a broader frequency range than the conventional tuned mass damper. A nonlinear, two degree-of-freedom model is developed with coordinates representing the traffic structure and the tapered impact damper. This research focuses on the application of the harmonic balance method to approximate the periodic solutions of the nonlinear equations to compute the nonlinear dynamics of the damped traffic signal structure. After designing and manufacturing a tapered impact damper, the traffic signal structure is tested with and without the damper using free vibration snapback tests. The experimental frequency and damping backbone curves are used to validate the analytical model, and the effectiveness of the damper is discussed.
ISSN:0732-8818
1747-1567
DOI:10.1007/s40799-024-00743-8