Evolution of Pore Structure in Organic-Lean and Organic-Rich Mudrocks

The pore structure of mudrocks is a key characteristic to evaluate flow behavior through these rocks. Although significant advances have been made to resolve pore characteristics, porosity evolution, or pore connectivity, there is still insufficient knowledge linking porosity evolution to flow and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2023-11, Vol.37 (21), p.16446-16460
Hauptverfasser: Rezaeyan, Amirsaman, Kampman, Niko, Pipich, Vitaliy, Barnsley, Lester C., Rother, Gernot, Magill, Clayton, Ma, Jingsheng, Busch, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pore structure of mudrocks is a key characteristic to evaluate flow behavior through these rocks. Although significant advances have been made to resolve pore characteristics, porosity evolution, or pore connectivity, there is still insufficient knowledge linking porosity evolution to flow and transport in mudrocks. To better understand these links, we conducted very small-angle (VSANS) and small-angle neutron scattering (SANS) experiments on 13 sets of mudrocks from global locations, characterized by differences in composition, maturity, and depositional environment. Our results indicate that a homogeneous pore structure reflects a stable and low-energy depositional environment. Organic-lean mudrocks mainly contain pores 50 nm), favoring production from, e.g., unconventional reservoirs. SANS-derived pore size distributions will help to better understand fluid imbibition and flow properties in mudrocks through comprehensive quantitative characterization of the nano- to micron scale pore network conduits and their relationships to burial diagenesis.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.3c02180