Three-dimensional continuum point cloud method for large deformation and its verification
This study presents a strong form based meshfree collocation method, which is named Continuum Point Cloud Method, to solve nonlinear field equations derived from classical mechanics for deformed bodies in three-dimensional Euclidean space. The method and its implementation are benchmarked against a...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2024-12, Vol.432 (PA), p.117307, Article 117307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents a strong form based meshfree collocation method, which is named Continuum Point Cloud Method, to solve nonlinear field equations derived from classical mechanics for deformed bodies in three-dimensional Euclidean space. The method and its implementation are benchmarked against a nonlinear vector field using manufactured solutions. The analysis of mechanical fields firstly focuses on the study of St. Venant Kirchhoff and compressible neo-Hookean materials. Results for various initial boundary value problems are presented, including benchmark cases involving unidirectional tension and simple shear. Subsequently, the study concludes with an analysis of a displacement-controlled simulation of a compressible neo-Hookean material, specifically a bar that is pulled to 50% of its original length and rotated 90°. The pure tension case yields a 1.5% error in displacement between computed and expected values and a combined tension and torsion loading case provides further insight into material behavior under complex loading conditions. The resulting normal axial and transverse stress-strain curves are also presented. Finally, the consistency and robustness of the proposed nonlinear numerical schemes are successfully demonstrated through various numerical experiments. |
---|---|
ISSN: | 0045-7825 |
DOI: | 10.1016/j.cma.2024.117307 |