Three-dimensional continuum point cloud method for large deformation and its verification

This study presents a strong form based meshfree collocation method, which is named Continuum Point Cloud Method, to solve nonlinear field equations derived from classical mechanics for deformed bodies in three-dimensional Euclidean space. The method and its implementation are benchmarked against a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2024-12, Vol.432 (PA), p.117307, Article 117307
Hauptverfasser: Schaefferkoetter, Peter M., Yoon, Young-Cheol, Song, Jeong-Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a strong form based meshfree collocation method, which is named Continuum Point Cloud Method, to solve nonlinear field equations derived from classical mechanics for deformed bodies in three-dimensional Euclidean space. The method and its implementation are benchmarked against a nonlinear vector field using manufactured solutions. The analysis of mechanical fields firstly focuses on the study of St. Venant Kirchhoff and compressible neo-Hookean materials. Results for various initial boundary value problems are presented, including benchmark cases involving unidirectional tension and simple shear. Subsequently, the study concludes with an analysis of a displacement-controlled simulation of a compressible neo-Hookean material, specifically a bar that is pulled to 50% of its original length and rotated 90°. The pure tension case yields a 1.5% error in displacement between computed and expected values and a combined tension and torsion loading case provides further insight into material behavior under complex loading conditions. The resulting normal axial and transverse stress-strain curves are also presented. Finally, the consistency and robustness of the proposed nonlinear numerical schemes are successfully demonstrated through various numerical experiments.
ISSN:0045-7825
DOI:10.1016/j.cma.2024.117307