Correlations between asymmetric compression, burn amplification, and hot-spot velocities in inertial confinement fusion implosions
This manuscript examines the correlations between the hot-spot velocity (an observable signature of residual kinetic energy), low-mode implosion asymmetries, and burn amplification in inertial confinement fusion implosions on the National Ignition Facility (NIF). Using a combination of two-dimension...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2023-09, Vol.30 (9) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This manuscript examines the correlations between the hot-spot velocity (an observable signature of residual kinetic energy), low-mode implosion asymmetries, and burn amplification in inertial confinement fusion implosions on the National Ignition Facility (NIF). Using a combination of two-dimensional axis-symmetric and three-dimensional radiation-hydrodynamic simulations coupled to neutronics, we find that for typical NIF implosions, the stagnation asymmetry multiplies the observed hot-spot velocity anywhere from 80% to 120%, while burn amplification always increases it. Additionally, we find stagnation asymmetry typically deflects the observed hot-spot flow. The two mechanisms (low-mode implosion asymmetries and burn amplification) can be decoupled, and application of a simple model to a database of cryogenic implosions on the NIF infers the total hot-spot velocity amplification. This finding modifies the interpretation of data collected from inertial confinement fusion experiments and impacts the magnitude and origin of low-mode asymmetries. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0153421 |