FlameNEST: explicit profile likelihoods with the Noble Element Simulation Technique
We present FlameNEST, a framework providing explicit likelihood evaluations in noble element particle detectors using data-driven models from the Noble Element Simulation Technique. FlameNEST provides a way to perform statistical analyses on real data with no dependence on large, computationally exp...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2022-08, Vol.17 (8), p.P08012 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present FlameNEST, a framework providing explicit likelihood evaluations in noble element particle detectors using data-driven models from the Noble Element Simulation Technique. FlameNEST provides a way to perform statistical analyses on real data with no dependence on large, computationally expensive Monte Carlo simulations by evaluating the likelihood on an event-by-event basis using analytic probability elements convolved together in a single TensorFlow multiplication. Furthermore, this robust framework creates opportunities for simple inter-collaboration analyses which will be fundamental for the future of experimental dark matter physics. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/17/08/P08012 |