Twisted MoSe2 Homobilayer Behaving as a Heterobilayer

Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)­electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-08, Vol.24 (31), p.9459-9467
Hauptverfasser: Karmakar, Arka, Al-Mahboob, Abdullah, Zawadzka, Natalia, Raczyński, Mateusz, Yang, Weiguang, Arfaoui, Mehdi, Gayatri, Kucharek, Julia, Sadowski, Jerzy T., Shin, Hyeon Suk, Babiński, Adam, Pacuski, Wojciech, Kazimierczuk, Tomasz, Molas, Maciej R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)­electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a “true” heterobilayer nature.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c01764