Impact of microstructure on elastic properties in the alloy Ti-42Al-8.5 Nb

The microstructure of a γ-TiAl alloy containing niobium undergoes continuous transformations during annealing at 550 °C. These take place within the α2-phase of lamellar (α2 +γ) colonies. We have characterized these changes by transmission electron microscopy and made a correlation to the elastic co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-10, Vol.932 (C)
Hauptverfasser: Gabrisch, Heike, Janovská, Michaela, Rackel, Marcus W., Pyczak, Florian, Stark, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microstructure of a γ-TiAl alloy containing niobium undergoes continuous transformations during annealing at 550 °C. These take place within the α2-phase of lamellar (α2 +γ) colonies. We have characterized these changes by transmission electron microscopy and made a correlation to the elastic constants determined by resonant ultrasonic spectroscopy during in-situ annealing at the same temperature. Further, the results show a continuous increase of the E-modulus. This can be attributed to elastic strains acting within α2 lamellae as a result of lattice transformations. After 5000h, a thermodynamic equilibrium was established with equal fractions of α2-phase and O-phase that differ only in lattice symmetry and Nb content. Generally, the presence of O-phase should contribute to lower elastic moduli, however in the present case the evolving microstructural characteristics were responsible for the observed increase in the E-modulus.
ISSN:0925-8388
DOI:10.1016/j.jallcom.2022.167578