Slippery Paraelectric Transition-Metal Dichalcogenide Bilayers
Traditional ferroelectrics undergo thermally induced phase transitions whereby their structural symmetry increases. The associated higher-symmetry structure is dubbed paraelectric. Ferroelectric transition-metal dichalcogenide bilayers have been recently shown to become paraelectric, but not much ha...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-10, Vol.22 (19), p.7984-7991 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional ferroelectrics undergo thermally induced phase transitions whereby their structural symmetry increases. The associated higher-symmetry structure is dubbed paraelectric. Ferroelectric transition-metal dichalcogenide bilayers have been recently shown to become paraelectric, but not much has been said of the atomistic configuration of such a phase. As discovered through numerical calculations that include molecular dynamics here, their paraelectricity can only be ascribed to a time average of ferroelectric phases with opposing intrinsic polarizations, whose switching requires macroscopically large areas to slip in unison. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c03373 |