A high-granularity calorimeter insert based on SiPM-on-tile technology at the future Electron-Ion Collider
Herein we present a design for a high-granularity calorimeter insert for future experiments at the Electron-Ion Collider (EIC). The sampling-calorimeter design uses scintillator tiles read out with silicon photomultipliers. It maximizes coverage close to the beampipe, while solving challenges arisin...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2022-12, Vol.1047 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein we present a design for a high-granularity calorimeter insert for future experiments at the Electron-Ion Collider (EIC). The sampling-calorimeter design uses scintillator tiles read out with silicon photomultipliers. It maximizes coverage close to the beampipe, while solving challenges arising from the beam-crossing angle and mechanical integration. It yields a compensated response that is linear over the energy range of interest for the EIC. Its energy resolution meets the requirements set in the EIC Yellow Report even with a basic reconstruction algorithm. Moreover, this detector will provide 5D shower data (position, energy, and time), which can be exploited with machine-learning techniques. This detector concept has the potential to unleash the power of imaging calorimetry at the EIC to enable measurements at extreme kinematics in electron–proton and electron–nucleus collisions. |
---|---|
ISSN: | 0168-9002 |