T 1 Anisotropy Elucidates Spin Relaxation Mechanisms in an S = 1 Cr(IV) Optically Addressable Molecular Qubit

Paramagnetic molecules offer unique advantages for quantum information science owing to their spatial compactness, synthetic tunability, room-temperature quantum coherence, and potential for optical state initialization and readout. However, current optically addressable molecular qubits are hampere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-08, Vol.14 (34), p.7658-7664
Hauptverfasser: Kazmierczak, Nathanael P., Luedecke, Kaitlin M., Gallmeier, Elisabeth T., Hadt, Ryan G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Paramagnetic molecules offer unique advantages for quantum information science owing to their spatial compactness, synthetic tunability, room-temperature quantum coherence, and potential for optical state initialization and readout. However, current optically addressable molecular qubits are hampered by rapid spin–lattice relaxation (T 1) even at sub-liquid nitrogen temperatures. Here, we use temperature- and orientation-dependent pulsed electron paramagnetic resonance (EPR) to elucidate the negative sign of the ground state zero-field splitting (ZFS) and assign T 1 anisotropy to specific types of motion in an optically addressable S = 1 Cr­(o-tolyl)4 molecular qubit. The anisotropy displays a distinct sin2(2θ) functional form that is not observed in S = 1/2 Cu­(acac)2 or other Cu­(II)/V­(IV) microwave addressable molecular qubits. The Cr­(o-tolyl)4 T 1 anisotropy is ascribed to couplings between electron spins and rotational motion in low-energy acoustic or pseudoacoustic phonons. Our findings suggest that rotational degrees of freedom should be suppressed to maximize the coherence temperature of optically addressable qubits.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.3c01964