Laser spectroscopy for the study of exotic nuclei

Investigation into the properties and structure of unstable nuclei far from stability is a key avenue of research in modern nuclear physics. These efforts are motivated by the continual observation of unexpected structure phenomena in nuclei with unusual proton-to-neutron ratios. In recent decades,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in particle and nuclear physics 2022-11, Vol.129 (C)
Hauptverfasser: Yang, Xiaofei F., Wang, S. J., Wilkins, S. G., Garcia Ruiz, R. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Investigation into the properties and structure of unstable nuclei far from stability is a key avenue of research in modern nuclear physics. These efforts are motivated by the continual observation of unexpected structure phenomena in nuclei with unusual proton-to-neutron ratios. In recent decades, laser spectroscopy techniques have made significant contributions in our understanding of exotic nuclei in different mass regions encompassing almost the entire nuclear chart. This is achieved through determining multiple fundamental properties of nuclear ground and isomeric states, such as nuclear spins, magnetic dipole and electric quadrupole moments and charge radii, via the measurement of hyperfine structures and isotope shifts in the atomic or ionic spectra of the nuclei of interest. These properties offer prominent tests of recently developed state-of-the-art nuclear theory and help to stimulate new developments in improving the many-body methods and nucleon–nucleon interactions at the core of these models. With the aim of exploring more exotic short-lived nuclei located ever closer to the proton and neutron driplines, laser spectroscopy techniques, with their continuous technological developments towards higher resolution and higher sensitivity, are extensively employed at current- and next-generation radioactive ion beam facilities worldwide. Ongoing efforts in parallel promise to improve the availability of these even more exotic species at next-generation facilities. Very recently, an innovative application of laser spectroscopy on molecules containing short-lived nuclei has been demonstrated offering additional opportunities for several fields of research, e.g. fundamental symmetry studies and astrophysics. Here, in this review, the basic nuclear properties measurable with laser spectroscopy will be introduced. How these observables are associated with nuclear structure and nucleon–nucleon interactions will be discussed. Following this, a general overview of different laser spectroscopy methods will be given with particular emphasis on technical advancements reported in recent years. The main focus of this article is to review the numerous highlights that have resulted from studying exotic nuclei in different mass regions with laser spectroscopy techniques since the last edition in this series. Finally, the challenges facing the field in addition to future opportunities will be discussed.
ISSN:0146-6410