Neural network-based control of an ultrafast laser

With the recent advances in machine learning (ML) and data science (DS), the control, modeling, and analysis of these complex systems continues to improve. In this work, we report on the optimization of the intensity of a femtosecond laser using feedforward neural networks (FFNN) that model the inpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2023-08, Vol.1053 (C), p.168195, Article 168195
Hauptverfasser: Aslam, A., Biedroń, S.G., Ma, Y., Murphy, J., Burger, M., Nees, J., Thomas, A.G.R., Krushelnick, K., Martínez-Ramón, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the recent advances in machine learning (ML) and data science (DS), the control, modeling, and analysis of these complex systems continues to improve. In this work, we report on the optimization of the intensity of a femtosecond laser using feedforward neural networks (FFNN) that model the input–output relationships of the data. The input parameters of the system were optimized to achieve the required performance of the femtosecond laser. We propose a neural network-based control system to model the relationship between the spectral amplitude and phase of the input laser pulse at the amplifier input and the shape of the output pulse. Low-jitter laser parameter inputs and the resulting laser pulse duration were modeled, and the resulting correlation between the input and output data was used to optimize the laser pulse. We demonstrate improved processing and laser control performance.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2023.168195