Electrochemical Cycling of Redox-Active Boron Cluster-Based Materials in the Solid State

This work demonstrates the first successful electrochemical cycling of a redox-active boron cluster-based material in the solid state. Specifically, we designed and synthesized an ether-functionalized dodecaborate cluster, B12(OCH3)12, which is the smallest redox-active building block in the B12(OR)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-07, Vol.145 (26), p.14345-14353
Hauptverfasser: Ready, Austin D., Irshad, Ahamed, Kallistova, Anna, Carrillo, Moises, Gembicky, Milan, Seshadri, Ram, Narayan, Sri, Spokoyny, Alexander M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work demonstrates the first successful electrochemical cycling of a redox-active boron cluster-based material in the solid state. Specifically, we designed and synthesized an ether-functionalized dodecaborate cluster, B12(OCH3)12, which is the smallest redox-active building block in the B12(OR)12 family. This species can reversibly access four oxidation states in solution, ranging from a dianion to a radical cation. We show that a chemically isolated and characterized neutral [B12(OCH3)12]0 cluster can be utilized as a cathode active material in a PEO-based rechargeable all-solid-state cell with a lithium metal anode. The cell exhibits an impressive active material utilization close to 95% at C/20 rate, a high Coulombic efficiency of 96%, and reversibility, with only 4% capacity fade after 16 days of cycling. This work represents a conceptual departure in the development of redox-active components for electrochemical storage and serves as an entry point to a broader class of borane-based materials.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c03065