Tröger's Base Chemistry in Solution and in Zr(IV)-Based Metal-Organic Frameworks

Tröger's base (TB) and its derivatives have been studied extensively due to their unique concave shape stemming from the endomethylene strap. However, the strap-clipped TB chemistry has been largely overlooked in metal-organic framework (MOF) solids, leading to a gap in our knowledge within thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2022-12, Vol.144 (49), p.22574-22581
Hauptverfasser: Gong, Wei, Kazem-Rostami, Masoud, Son, Florencia A, Su, Shengyi, Fahy, Kira M, Xie, Haomiao, Islamoglu, Timur, Liu, Yan, Stoddart, J Fraser, Cui, Yong, Farha, Omar K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tröger's base (TB) and its derivatives have been studied extensively due to their unique concave shape stemming from the endomethylene strap. However, the strap-clipped TB chemistry has been largely overlooked in metal-organic framework (MOF) solids, leading to a gap in our knowledge within this field. In this work, we report the in situ strap elimination of a carboxylate-carrying TB in the presence of formic acid, both in solution and in Zr(IV)-based MOFs. In the solution system, the methanodiazocine nucleus can be exclusively transformed into an , -diformyl-decorated phenhomazine derivative, regardless of the solvent used (DMF, DMA, or DEF), as unambiguously uncovered by single crystal X-ray crystallography. In contrast, while in the MOF synthetic system, the degree of derivatization reaction can be effectively controlled to give either the secondary diamine or formyl-decorated diamine, depending on the solvent used (DMF or DEF), resulting in the formation of two Zr-MOFs with 8-connected (NU-1900) and 12-connected (NU-407) topologies, respectively. The derivatization mechanism is proposed to be topology-guided and dependent on the local acid concentration during the MOF formation processes. Moreover, we discovered a novel post-synthetically water-induced in situ linker formylation process in NU-1900 through sequential formic acid elimination, migration, and condensation processes, affording an isostructural framework with the same linker as in NU-407, which further corroborates our proposed mechanism. Additionally, the highly defective NU-1900 with abundant accessible Zr sites was demonstrated to be an outstanding catalyst for the detoxification of a nerve agent simulant with a half-life of less than 1 min.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.2c08623