Rotamers of Methanediol: Composite Ab Initio Predictions of Structures, Frequencies, and Rovibrational Constants
Geminal diols are known to be important intermediates in atmospheric ozonolysis and the aerosol cycle. Recently, the simplest member of this class, methanediol, was interrogated in the gas phase with infrared spectroscopy. To aid in future spectroscopic investigations of methanediol, including in th...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-02, Vol.127 (4), p.924-937 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geminal diols are known to be important intermediates in atmospheric ozonolysis and the aerosol cycle. Recently, the simplest member of this class, methanediol, was interrogated in the gas phase with infrared spectroscopy. To aid in future spectroscopic investigations of methanediol, including in the interstellar medium, we report fundamental frequencies and rovibrational constants for the two rotamers of this molecule using ab initio composite methods along with vibrational perturbation theory. Sensitivity of the predictions to the level of theory and the treatment of anharmonic resonances are carefully assessed. The OH stretching harmonic frequencies of both rotamers are particularly sensitive to the level of theory. The CH stretches of the Cs rotamer are sensitive to the treatment of anharmonic resonances with VPT2-based effective Hamiltonian models. Equilibrium bond distances and harmonic frequencies are converged conservatively to within 0.0005 Å and 3 cm–1, respectively. The effect of tunneling on the rotational constants is investigated with a 2D variational calculation, based on a relaxed hydroxyl torsional potential energy surface. Tunneling is found to be negligible in the lower energy C 2 rotamer but should modify the rotational constants of the Cs rotamer on the order of MHz, giving rise to rotational line splittings of the same order. The rovibrational constants of the Cs rotamer are dominated by hydroxyl torsional effects, and here we see evidence for the breakdown of vibrational perturbation theory. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.2c06686 |