Enhanced Catalytic Hydrodeoxygenation of Activated Carbon-Supported Metal Catalysts via Rapid Plasma Surface Functionalization
We employ a nonthermal, He/O2 atmospheric plasma as an efficient surface functionalization method of activated carbons. We show that plasma treatment rapidly increases the surface oxygen content from 4.1 to 23.4% on a polymer-based spherical activated carbon in 10 min. Plasma treatment is 3 orders o...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-06, Vol.15 (22), p.26737-26745 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We employ a nonthermal, He/O2 atmospheric plasma as an efficient surface functionalization method of activated carbons. We show that plasma treatment rapidly increases the surface oxygen content from 4.1 to 23.4% on a polymer-based spherical activated carbon in 10 min. Plasma treatment is 3 orders of magnitude faster than acidic oxidation and introduces a diverse range of carbonyl (CO) and carboxyl (O–CO) functionalities that were not found with acidic oxidation. The increased oxygen functionalities reduce the particle size of a high 20 wt % loading Cu catalyst by >44% and suppress the formation of large agglomerates. Increased metal dispersion exposes additional active sites and improves the yield of hydrodeoxygenation of 5-hydroxymethyl furfural to 2,5-dimethyl furan, an essential compound for biofuel replacement, by 47%. Surface functionalization via plasma can advance catalysis synthesis while being rapid and sustainable. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c03447 |