Understanding oxidation of Fe-Cr-Al alloys through explainable artificial intelligence

Abstract The oxidation resistance of FeCrAl based on alloying composition and oxidizing conditions is predicted using a combinatorial experimental and artificial intelligence approach. A neural network (NN) classification model was trained on the experimental FeCrAl dataset produced at GE Research....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS communications 2023-01, Vol.13 (1)
Hauptverfasser: Roy, Indranil, Feng, Bojun, Roychowdhury, Subhrajit, Ravi, Sandipp Krishnan, Umretiya, Rajnikant V., Reynolds, Christopher, Ghosh, Sayan, Rebak, Raul B., Hoffman, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title MRS communications
container_volume 13
creator Roy, Indranil
Feng, Bojun
Roychowdhury, Subhrajit
Ravi, Sandipp Krishnan
Umretiya, Rajnikant V.
Reynolds, Christopher
Ghosh, Sayan
Rebak, Raul B.
Hoffman, Andrew
description Abstract The oxidation resistance of FeCrAl based on alloying composition and oxidizing conditions is predicted using a combinatorial experimental and artificial intelligence approach. A neural network (NN) classification model was trained on the experimental FeCrAl dataset produced at GE Research. Furthermore, using the SHapley Additive exPlanations (SHAP) explainable artificial intelligence (XAI) tool, we explore how the NN can showcase further material insights that are unavailable directly from a black-box model. We report that high Al and Cr content forms protective oxide layer, while Mo in FeCrAl creates thick unprotective oxide scale that is vulnerable to spallation due to thermal expansion. Graphical abstract
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2418376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418376</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24183763</originalsourceid><addsrcrecordid>eNqNykEOgjAQQNEuNJEod2jcNxEQiktDJB5A3ZJaBhgzmZq2Jnh7XXgA_-Zt_kIkeVYeVFVXeiXSEB67b2WVa10m4nblHnyIhnvkUboZexPRsXSDbEE1Xh1JGiL3DjJO3r3GScL8JINs7gTS-IgDWjQkkSMQ4QhsYSOWg6EA6c-12LanS3NWLkTsgsUIdrKOGWzs8n1WF7oq_po-37RByg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding oxidation of Fe-Cr-Al alloys through explainable artificial intelligence</title><source>SpringerLink Journals</source><creator>Roy, Indranil ; Feng, Bojun ; Roychowdhury, Subhrajit ; Ravi, Sandipp Krishnan ; Umretiya, Rajnikant V. ; Reynolds, Christopher ; Ghosh, Sayan ; Rebak, Raul B. ; Hoffman, Andrew</creator><creatorcontrib>Roy, Indranil ; Feng, Bojun ; Roychowdhury, Subhrajit ; Ravi, Sandipp Krishnan ; Umretiya, Rajnikant V. ; Reynolds, Christopher ; Ghosh, Sayan ; Rebak, Raul B. ; Hoffman, Andrew ; GE Packaged Power, LLC, Houston, TX (United States)</creatorcontrib><description>Abstract The oxidation resistance of FeCrAl based on alloying composition and oxidizing conditions is predicted using a combinatorial experimental and artificial intelligence approach. A neural network (NN) classification model was trained on the experimental FeCrAl dataset produced at GE Research. Furthermore, using the SHapley Additive exPlanations (SHAP) explainable artificial intelligence (XAI) tool, we explore how the NN can showcase further material insights that are unavailable directly from a black-box model. We report that high Al and Cr content forms protective oxide layer, while Mo in FeCrAl creates thick unprotective oxide scale that is vulnerable to spallation due to thermal expansion. Graphical abstract</description><identifier>ISSN: 2159-6867</identifier><language>eng</language><publisher>United States: Springer Nature</publisher><subject>Materials Science</subject><ispartof>MRS communications, 2023-01, Vol.13 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000336124323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2418376$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Indranil</creatorcontrib><creatorcontrib>Feng, Bojun</creatorcontrib><creatorcontrib>Roychowdhury, Subhrajit</creatorcontrib><creatorcontrib>Ravi, Sandipp Krishnan</creatorcontrib><creatorcontrib>Umretiya, Rajnikant V.</creatorcontrib><creatorcontrib>Reynolds, Christopher</creatorcontrib><creatorcontrib>Ghosh, Sayan</creatorcontrib><creatorcontrib>Rebak, Raul B.</creatorcontrib><creatorcontrib>Hoffman, Andrew</creatorcontrib><creatorcontrib>GE Packaged Power, LLC, Houston, TX (United States)</creatorcontrib><title>Understanding oxidation of Fe-Cr-Al alloys through explainable artificial intelligence</title><title>MRS communications</title><description>Abstract The oxidation resistance of FeCrAl based on alloying composition and oxidizing conditions is predicted using a combinatorial experimental and artificial intelligence approach. A neural network (NN) classification model was trained on the experimental FeCrAl dataset produced at GE Research. Furthermore, using the SHapley Additive exPlanations (SHAP) explainable artificial intelligence (XAI) tool, we explore how the NN can showcase further material insights that are unavailable directly from a black-box model. We report that high Al and Cr content forms protective oxide layer, while Mo in FeCrAl creates thick unprotective oxide scale that is vulnerable to spallation due to thermal expansion. Graphical abstract</description><subject>Materials Science</subject><issn>2159-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNykEOgjAQQNEuNJEod2jcNxEQiktDJB5A3ZJaBhgzmZq2Jnh7XXgA_-Zt_kIkeVYeVFVXeiXSEB67b2WVa10m4nblHnyIhnvkUboZexPRsXSDbEE1Xh1JGiL3DjJO3r3GScL8JINs7gTS-IgDWjQkkSMQ4QhsYSOWg6EA6c-12LanS3NWLkTsgsUIdrKOGWzs8n1WF7oq_po-37RByg</recordid><startdate>20230109</startdate><enddate>20230109</enddate><creator>Roy, Indranil</creator><creator>Feng, Bojun</creator><creator>Roychowdhury, Subhrajit</creator><creator>Ravi, Sandipp Krishnan</creator><creator>Umretiya, Rajnikant V.</creator><creator>Reynolds, Christopher</creator><creator>Ghosh, Sayan</creator><creator>Rebak, Raul B.</creator><creator>Hoffman, Andrew</creator><general>Springer Nature</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000336124323</orcidid></search><sort><creationdate>20230109</creationdate><title>Understanding oxidation of Fe-Cr-Al alloys through explainable artificial intelligence</title><author>Roy, Indranil ; Feng, Bojun ; Roychowdhury, Subhrajit ; Ravi, Sandipp Krishnan ; Umretiya, Rajnikant V. ; Reynolds, Christopher ; Ghosh, Sayan ; Rebak, Raul B. ; Hoffman, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24183763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Indranil</creatorcontrib><creatorcontrib>Feng, Bojun</creatorcontrib><creatorcontrib>Roychowdhury, Subhrajit</creatorcontrib><creatorcontrib>Ravi, Sandipp Krishnan</creatorcontrib><creatorcontrib>Umretiya, Rajnikant V.</creatorcontrib><creatorcontrib>Reynolds, Christopher</creatorcontrib><creatorcontrib>Ghosh, Sayan</creatorcontrib><creatorcontrib>Rebak, Raul B.</creatorcontrib><creatorcontrib>Hoffman, Andrew</creatorcontrib><creatorcontrib>GE Packaged Power, LLC, Houston, TX (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>MRS communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Indranil</au><au>Feng, Bojun</au><au>Roychowdhury, Subhrajit</au><au>Ravi, Sandipp Krishnan</au><au>Umretiya, Rajnikant V.</au><au>Reynolds, Christopher</au><au>Ghosh, Sayan</au><au>Rebak, Raul B.</au><au>Hoffman, Andrew</au><aucorp>GE Packaged Power, LLC, Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding oxidation of Fe-Cr-Al alloys through explainable artificial intelligence</atitle><jtitle>MRS communications</jtitle><date>2023-01-09</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><issn>2159-6867</issn><abstract>Abstract The oxidation resistance of FeCrAl based on alloying composition and oxidizing conditions is predicted using a combinatorial experimental and artificial intelligence approach. A neural network (NN) classification model was trained on the experimental FeCrAl dataset produced at GE Research. Furthermore, using the SHapley Additive exPlanations (SHAP) explainable artificial intelligence (XAI) tool, we explore how the NN can showcase further material insights that are unavailable directly from a black-box model. We report that high Al and Cr content forms protective oxide layer, while Mo in FeCrAl creates thick unprotective oxide scale that is vulnerable to spallation due to thermal expansion. Graphical abstract</abstract><cop>United States</cop><pub>Springer Nature</pub><orcidid>https://orcid.org/0000000336124323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2159-6867
ispartof MRS communications, 2023-01, Vol.13 (1)
issn 2159-6867
language eng
recordid cdi_osti_scitechconnect_2418376
source SpringerLink Journals
subjects Materials Science
title Understanding oxidation of Fe-Cr-Al alloys through explainable artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20oxidation%20of%20Fe-Cr-Al%20alloys%20through%20explainable%20artificial%20intelligence&rft.jtitle=MRS%20communications&rft.au=Roy,%20Indranil&rft.aucorp=GE%20Packaged%20Power,%20LLC,%20Houston,%20TX%20(United%20States)&rft.date=2023-01-09&rft.volume=13&rft.issue=1&rft.issn=2159-6867&rft_id=info:doi/&rft_dat=%3Costi%3E2418376%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true