Understanding oxidation of Fe-Cr-Al alloys through explainable artificial intelligence

Abstract The oxidation resistance of FeCrAl based on alloying composition and oxidizing conditions is predicted using a combinatorial experimental and artificial intelligence approach. A neural network (NN) classification model was trained on the experimental FeCrAl dataset produced at GE Research....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS communications 2023-01, Vol.13 (1)
Hauptverfasser: Roy, Indranil, Feng, Bojun, Roychowdhury, Subhrajit, Ravi, Sandipp Krishnan, Umretiya, Rajnikant V., Reynolds, Christopher, Ghosh, Sayan, Rebak, Raul B., Hoffman, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The oxidation resistance of FeCrAl based on alloying composition and oxidizing conditions is predicted using a combinatorial experimental and artificial intelligence approach. A neural network (NN) classification model was trained on the experimental FeCrAl dataset produced at GE Research. Furthermore, using the SHapley Additive exPlanations (SHAP) explainable artificial intelligence (XAI) tool, we explore how the NN can showcase further material insights that are unavailable directly from a black-box model. We report that high Al and Cr content forms protective oxide layer, while Mo in FeCrAl creates thick unprotective oxide scale that is vulnerable to spallation due to thermal expansion. Graphical abstract
ISSN:2159-6867