In Situ High-Temperature Structural Analysis of High-Entropy Rare-Earth Sesquioxides

High-entropy rare-earth (RE) sesquioxides (RE2O3) containing five cations in equimolar amounts have been investigated for a variety of applications, but little is known about their polymorphic behavior and coefficient of thermal expansion. Here, we evaluate the effect of the average ionic radius (AI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2023-02, Vol.35 (3), p.1116-1124
Hauptverfasser: Pianassola, Matheus, Anderson, Kaden, Agca, Can, Benmore, Chris J., McMurray, Jake W., Neuefeind, Jöerg C., Melcher, Charles, Zhuravleva, Mariya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-entropy rare-earth (RE) sesquioxides (RE2O3) containing five cations in equimolar amounts have been investigated for a variety of applications, but little is known about their polymorphic behavior and coefficient of thermal expansion. Here, we evaluate the effect of the average ionic radius (AIR) on the polymorphism of high-entropy RE2O3. Powder samples of compositions 1 (Lu,Y,Ho,Nd,La)2O3 (AIR = 0.938 Å) and 2 (Gd,Eu,Sm,Nd,La)2O3 (AIR = 0.982 Å) were synthesized via a wet chemical method, and bead samples were prepared for aerodynamic levitation by melting the powders in a copper hearth. Structural transitions were monitored upon cooling from the melt to 1000 °C via in situ X-ray diffraction on aerodynamically levitated samples. The phase evolution was liquid, hexagonal H-type, and monoclinic B-type for composition 1 and liquid, cubic X-type, H-type, and B-type for composition 2. Based on their AIR, the general polymorphic transformations of the high-entropy RE2O3 follow the trend of single-RE RE2O3, but the transition temperatures differ from those of single-RE RE2O3. The coefficient of thermal expansion values of the B-type phase of compositions 1 and 2 are similar to those of Gd2O3 and previously published high-entropy RE2O3.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.2c03088