Molecular beam scattering of ammonia from a dodecane flat liquid jet
The evaporation and scattering of ND3 from a dodecane flat liquid jet are investigated and the results are compared with previous studies on molecular beam scattering from liquid surfaces. Evaporation is well-described by a Maxwell–Boltzmann flux distribution with a cos θ angular distribution at the...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2024-05, Vol.251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evaporation and scattering of ND3 from a dodecane flat liquid jet are investigated and the results are compared with previous studies on molecular beam scattering from liquid surfaces. Evaporation is well-described by a Maxwell–Boltzmann flux distribution with a cos θ angular distribution at the liquid temperature. Scattering experiments at Ei = 28.8 kJ mol-1 over a range of deflection angles show evidence for impulsive scattering and thermal desorption. Further, at a deflection angle of 90°, the thermal desorption fraction is 0.49, which is higher than that of other molecules previously scattered from dodecane and consistent with work performed on NH3 scattering from a squalane-wetted wheel. ND3 scattering from dodecane results in super-specular scattering, as seen in previous experiments on dodecane. The impulsive scattering channel is fitted to a “soft-sphere” model, yielding an effective surface mass of 55 amu and an internal excitation of 5.08 kJ mol-1. Overall, impulsively scattered ND3 behaves similarly to other small molecules scattered from dodecane. |
---|---|
ISSN: | 1359-6640 |