A machine learning approach for particle accelerator errant beam prediction using spatial phase deviation
Particle accelerators are extremely complex systems that are expected to operate on high availability. Predicting impending failures only by utilizing data collected from diagnostic equipment already on board can help operators to avoid installing expensive sensors, unscheduled downtime and associat...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2024-06, Vol.1063 (C), p.169232, Article 169232 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particle accelerators are extremely complex systems that are expected to operate on high availability. Predicting impending failures only by utilizing data collected from diagnostic equipment already on board can help operators to avoid installing expensive sensors, unscheduled downtime and associated costs. For this purpose we explore the predictive power of Machine Learning algorithms to detect faulty beams prior to the failure. In this study, we propose a Machine Learning approach to model mapping from a pair of sensors located across the accelerator. While the model is trained to represent normal operation, we evaluate the predictive performance on known faulty beam pulses. We also investigate the model performance on unseen data through k-fold cross-validation. Then we recap the analysis with a neural architecture search and hyperparameter optimization study to fine tune our initial model. This paper will also introduce a sustainable framework that can standardize Machine Learning workflow applied to particle accelerators. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2024.169232 |