Exceptional electronic transport and quantum oscillations in thin bismuth crystals grown inside van der Waals materials

Confining materials to two-dimensional forms changes the behaviour of the electrons and enables the creation of new devices. However, most materials are challenging to produce as uniform, thin crystals. Here we present a synthesis approach where thin crystals are grown in a nanoscale mould defined b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2024-06, Vol.23 (6), p.741-746
Hauptverfasser: Chen, Laisi, Wu, Amy X., Tulu, Naol, Wang, Joshua, Juanson, Adrian, Watanabe, Kenji, Taniguchi, Takashi, Pettes, Michael T., Campbell, Marshall A., Xu, Mingjie, Gadre, Chaitanya A., Zhou, Yinong, Chen, Hangman, Cao, Penghui, Jauregui, Luis A., Wu, Ruqian, Pan, Xiaoqing, Sanchez-Yamagishi, Javier D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Confining materials to two-dimensional forms changes the behaviour of the electrons and enables the creation of new devices. However, most materials are challenging to produce as uniform, thin crystals. Here we present a synthesis approach where thin crystals are grown in a nanoscale mould defined by atomically flat van der Waals (vdW) materials. By heating and compressing bismuth in a vdW mould made of hexagonal boron nitride, we grow ultraflat bismuth crystals less than 10 nm thick. Due to quantum confinement, the bismuth bulk states are gapped, isolating intrinsic Rashba surface states for transport studies. The vdW-moulded bismuth shows exceptional electronic transport, enabling the observation of Shubnikov–de Haas quantum oscillations originating from the (111) surface state Landau levels. By measuring the gate-dependent magnetoresistance, we observe multi-carrier quantum oscillations and Landau level splitting, with features originating from both the top and bottom surfaces. Our vdW mould growth technique establishes a platform for electronic studies and control of bismuth’s Rashba surface states and topological boundary modes 1 – 3 . Beyond bismuth, the vdW-moulding approach provides a low-cost way to synthesize ultrathin crystals and directly integrate them into a vdW heterostructure. Ultrathin and flat crystals of bismuth are grown between the atomically flat layers of a van der Waals material. These crystals exhibit outstanding electronic properties, including gate-tunable quantum oscillations of the magnetoresistance.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-024-01894-0