Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2023-12, Vol.19 (12), p.1551-1560
Hauptverfasser: Bradley, Samuel A., Lehka, Beata J., Hansson, Frederik G., Adhikari, Khem B., Rago, Daniela, Rubaszka, Paulina, Haidar, Ahmad K., Chen, Ling, Hansen, Lea G., Gudich, Olga, Giannakou, Konstantina, Lengger, Bettina, Gill, Ryan T., Nakamura, Yoko, de Bernonville, Thomas Dugé, Koudounas, Konstantinos, Romero-Suarez, David, Ding, Ling, Qiao, Yijun, Frimurer, Thomas M., Petersen, Anja A., Besseau, Sébastien, Kumar, Sandeep, Gautron, Nicolas, Melin, Celine, Marc, Jillian, Jeanneau, Remi, O’Connor, Sarah E., Courdavault, Vincent, Keasling, Jay D., Zhang, Jie, Jensen, Michael K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker’s yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential. A yeast platform for de novo biosynthesis of medicinal plant compounds has now been reported. The platform was used to explore the biocatalytic potential of refactored plant pathways and resulted in the production of 19 halogenated derivatives with therapeutic potential.
ISSN:1552-4450
1552-4469
DOI:10.1038/s41589-023-01430-2