Enhancing Low-Temperature Syngas Production via Surface Tailoring of Supported Intermetallic Nanocatalysts

An active and coke-resistant silica-encapsulated intermetallic Ni3Zn nanoparticle catalyst was developed for low-temperature (450 °C) dry reforming of methane (DRM). The catalyst exhibited a remarkable 4-fold increase in activity (4.5 s–1) with over 99% CO selectivity and 3 orders of magnitude less...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2024-05, Vol.14 (10), p.7746-7755
Hauptverfasser: Johnson, Olusola, He, Yang, Pierre-Charles, Isabella St, Richter, Jillian, Joseph, Babu, Kuhn, John N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An active and coke-resistant silica-encapsulated intermetallic Ni3Zn nanoparticle catalyst was developed for low-temperature (450 °C) dry reforming of methane (DRM). The catalyst exhibited a remarkable 4-fold increase in activity (4.5 s–1) with over 99% CO selectivity and 3 orders of magnitude less carbonaceous species and demonstrated remarkable stability (70 h) compared to that of a monometallic Ni catalyst. The key is the combined effect of surface ensemble structure and electronic interaction modulation through the surface composition tailoring achieved by off-stoichiometric Ni and Zn loading in controlling surface chemistry for achieving different activities and H2/CO ratios. Characterized by ion spectroscopy, X-ray photoelectron spectroscopy, and the neutron pair distribution function, it was revealed that paired Niδ−–Znδ+ active sites are crucial for DRM. Transient infrared spectroscopy and isotopic analysis uncovered the synergistic effect of Niδ−–Znδ+ sites in activating C–H bonds and dissociating CO2 to prevent coke formation under low-temperature conditions.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.4c01180