Relaxing Wrinkles in Jammed Interfacial Assemblies

Dynamic covalent bonding has emerged as a mean by which stresses in a network can be relaxed. Here, the strength of the bonding of ligands to nanoparticles at the interface between two immiscible liquids affect the same results in jammed assemblies of nanoparticle surfactants. Beyond a critical degr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-09, Vol.62 (36), p.e202307713-n/a
Hauptverfasser: Xie, Ganhua, Zhu, Shipei, Kim, Paul Y., Jiang, Shubao, Yi, Qinpiao, Li, Pei, Chu, Zonglin, Helms, Brett A., Russell, Thomas P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic covalent bonding has emerged as a mean by which stresses in a network can be relaxed. Here, the strength of the bonding of ligands to nanoparticles at the interface between two immiscible liquids affect the same results in jammed assemblies of nanoparticle surfactants. Beyond a critical degree of overcrowding induced by the compression of jammed interfacial assemblies, the bonding of ligands to nanoparticles (NPs) can be broken, resulting in a desorption of the NPs from the interface. This reduces the areal density of nanoparticle surfactants at the interface, allowing the assemblies to relax, not to a fluid state but rather another jammed state. The relaxation of the wrinkles caused by the compression reflects the tendency of these assemblies to eliminate areas of high curvature, favoring a more planar geometry. This enabled the generation of giant vesicular and multivesicular structures from these assemblies. Autonomous stress‐relaxation by dynamic jammed assemblies of nanoparticles and lipids at the interface was demonstrated. Such a lipid‐based self‐relaxing system may find applications in soft robots, medical and materials applications.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202307713