Variations in proton transfer pathways and energetics on pristine and defect-rich quartz surfaces in water: Insights into the bimodal acidities of quartz

[Display omitted] Understanding the mechanisms of proton transfer on quartz surfaces in water is critical for a range of processes in geochemical, environmental, and materials sciences. The wide range of surface acidities (>9 pKa units) found on the ubiquitous mineral quartz is caused by the stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-07, Vol.666, p.232-243
Hauptverfasser: Yuan, Ke, Rampal, Nikhil, Irle, Stephan, Criscenti, Louise J., Lee, Sang Soo, Adapa, Sai, Stack, Andrew G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Understanding the mechanisms of proton transfer on quartz surfaces in water is critical for a range of processes in geochemical, environmental, and materials sciences. The wide range of surface acidities (>9 pKa units) found on the ubiquitous mineral quartz is caused by the structural variations of surface silanol groups. Molecular scale simulations provide essential tools for elucidating the origin of site-specific surface acidities. We used density-functional tight-binding-based molecular dynamics combined with rare-event metadynamics simulations to probe the mechanisms of deprotonation reactions from ten representative surface silanol groups found on both pristine and defect-rich quartz (101) surfaces with Si vacancies. The results show that deprotonation is a highly dynamic process where both the surface hydroxyls and bridging oxygen atoms serve as the proton acceptors, in addition to water. Deprotonation of embedded silanols through intrasurface proton transfer exhibited lower pKa values with less H-bond participation and higher energy barriers, suggesting a new mechanism to explain the bimodal acidity observed on quartz surface. Defect sites, recently shown to comprise a significant portion of the quartz (101) surface, diversify the coordination and local H-bonding environments of the surface silanols, changing both the deprotonation pathways and energetics, leading to a wider range of pKa values (2.4 to 11.5) than that observed on pristine quartz surface (10.4 and 12.1).
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2024.03.144