Entanglement area law for one-dimensional gauge theories and bosonic systems

Here, we prove an entanglement area law for a class of one-dimensional quantum systems involving infinite-dimensional local Hilbert spaces. This class of quantum systems includes bosonic models and lattice gauge theories in one spatial dimension. Our proof relies on results concerning the robustness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2023-10, Vol.108 (4), Article 042422
Hauptverfasser: Abrahamsen, Nilin, Tong, Yu, Bao, Ning, Su, Yuan, Wiebe, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we prove an entanglement area law for a class of one-dimensional quantum systems involving infinite-dimensional local Hilbert spaces. This class of quantum systems includes bosonic models and lattice gauge theories in one spatial dimension. Our proof relies on results concerning the robustness of the ground state and spectral gap to the truncation of Hilbert space, applied within the approximate-ground-state projector (AGSP) framework. Our result provides theoretical justification for using tensor networks to study the ground-state properties of quantum systems with infinite local degrees of freedom.
ISSN:2469-9926
2469-9934
DOI:10.1103/PhysRevA.108.042422