Kinetic-ballooning-limited pedestals in spherical tokamak plasmas
A theoretical model is presented that for the first time matches experimental measurements of the pedestal width-height Diallo scaling in the low-aspect-ratio high-β tokamak NSTX. Combining linear gyrokinetics with self-consistent pedestal equilibrium variation, kinetic-ballooning, rather than ideal...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2024-04, Vol.64 (5) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A theoretical model is presented that for the first time matches experimental measurements of the pedestal width-height Diallo scaling in the low-aspect-ratio high-β tokamak NSTX. Combining linear gyrokinetics with self-consistent pedestal equilibrium variation, kinetic-ballooning, rather than ideal-ballooning plasma instability, is shown to limit achievable confinement in spherical tokamak pedestals. Simulations are used to find the novel Gyrokinetic Critical Pedestal constraint, which determines the steepest pressure profile a pedestal can sustain subject to gyrokinetic instability. Gyrokinetic width-height scaling expressions for NSTX pedestals with varying density and temperature profiles are obtained. These scalings for STs depart significantly from that of conventional aspect ratio tokamaks. |
---|---|
ISSN: | 0029-5515 |