Ligand-channel-enabled ultrafast Li-ion conduction

Li-ion batteries (LIBs) for electric vehicles and aviation demand high energy density, fast charging and a wide operating temperature range, which are virtually impossible because they require electrolytes to simultaneously have high ionic conductivity, low solvation energy and low melting point and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-03, Vol.627 (8002), p.101-107
Hauptverfasser: Lu, Di, Li, Ruhong, Rahman, Muhammad Mominur, Yu, Pengyun, Lv, Ling, Yang, Sheng, Huang, Yiqiang, Sun, Chuangchao, Zhang, Shuoqing, Zhang, Haikuo, Zhang, Junbo, Xiao, Xuezhang, Deng, Tao, Fan, Liwu, Chen, Lixin, Wang, Jianping, Hu, Enyuan, Wang, Chunsheng, Fan, Xiulin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Li-ion batteries (LIBs) for electric vehicles and aviation demand high energy density, fast charging and a wide operating temperature range, which are virtually impossible because they require electrolytes to simultaneously have high ionic conductivity, low solvation energy and low melting point and form an anion-derived inorganic interphase 1 – 5 . Here we report guidelines for designing such electrolytes by using small-sized solvents with low solvation energy. The tiny solvent in the secondary solvation sheath pulls out the Li + in the primary solvation sheath to form a fast ion-conduction ligand channel to enhance Li + transport, while the small-sized solvent with low solvation energy also allows the anion to enter the first Li + solvation shell to form an inorganic-rich interphase. The electrolyte-design concept is demonstrated by using fluoroacetonitrile (FAN) solvent. The electrolyte of 1.3 M lithium bis(fluorosulfonyl)imide (LiFSI) in FAN exhibits ultrahigh ionic conductivity of 40.3 mS cm −1 at 25 °C and 11.9 mS cm −1 even at −70 °C, thus enabling 4.5-V graphite||LiNi 0.8 Mn 0.1 Co 0.1 O 2 pouch cells (1.2 Ah, 2.85 mAh cm −2 ) to achieve high reversibility (0.62 Ah) when the cells are charged and discharged even at −65 °C. The electrolyte with small-sized solvents enables LIBs to simultaneously achieve high energy density, fast charging and a wide operating temperature range, which is unattainable for the current electrolyte design but is highly desired for extreme LIBs. This mechanism is generalizable and can be expanded to other metal-ion battery electrolytes. An electrolyte design using small-sized fluoroacetonitrile solvents to form a ligand channel produces lithium-ion batteries simultaneously achieving high energy density, fast charging and wide operating temperature range, desirable features for batteries working in extreme conditions.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-024-07045-4