Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications

Here, this paper presents a novel battery model parameterization method using actual field measurement and manufacturer datasheet for real-time hardware-in-the-loop (HIL) applications. It is critical that real-time HIL models can accurately reproduce field test results so that tests can be conducted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2019-11, Vol.11 (3)
Hauptverfasser: Xie, Fuhong, Yu, Hui, Long, Qian, Zeng, Wente, Lu, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title IEEE transactions on smart grid
container_volume 11
creator Xie, Fuhong
Yu, Hui
Long, Qian
Zeng, Wente
Lu, Ning
description Here, this paper presents a novel battery model parameterization method using actual field measurement and manufacturer datasheet for real-time hardware-in-the-loop (HIL) applications. It is critical that real-time HIL models can accurately reproduce field test results so that tests can be conducted on HIL testbeds instead of in the field. In the past, numerical heuristic optimization algorithms were often used to derive parameters for battery models. However, the deterministic algorithms often reach a locally optimal solution and stochastic heuristic searching strategies suffer from low searching efficiency. Therefore, in this paper, we propose a global-local searching enhanced genetic algorithm (GL-SEGA). By applying the generalized opposition-based learning mechanism, GL-SEGA can efficiently explore the global solution space. By using the trust-region-reflective method to perform the local search, the GL-SEGA can improve the accuracy and convergence in its local exploitations. Field measurements and manufactory datasheets are used to test and validate the accuracy and robustness of the GL-SEGA algorithm.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2329512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329512</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23295123</originalsourceid><addsrcrecordid>eNqNjM2KwkAQhAdZQVl9h8Z7wGRUyNFfFAyI6FmaSUdHJjNhuj3o0xuWxbN1qeKrojqqn-aTPNHjWfrzyVPdU0Pm-7iV1nqW5X3VLFCE4hOKUJKDA0asqQX2hWKDhzNbf4UC_aNCI49IEVYoyDciAfQlbCy5EgpCbsuavEAVIhwJXXKyNcF2t4d50zhr_g55oLoVOqbhv_-q0WZ9Wm6TwGIvbKyQuZngPRm5ZDrLp2mmvxq9AQwKTHI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications</title><source>IEEE Xplore</source><creator>Xie, Fuhong ; Yu, Hui ; Long, Qian ; Zeng, Wente ; Lu, Ning</creator><creatorcontrib>Xie, Fuhong ; Yu, Hui ; Long, Qian ; Zeng, Wente ; Lu, Ning ; North Carolina State University, Raleigh, NC (United States)</creatorcontrib><description>Here, this paper presents a novel battery model parameterization method using actual field measurement and manufacturer datasheet for real-time hardware-in-the-loop (HIL) applications. It is critical that real-time HIL models can accurately reproduce field test results so that tests can be conducted on HIL testbeds instead of in the field. In the past, numerical heuristic optimization algorithms were often used to derive parameters for battery models. However, the deterministic algorithms often reach a locally optimal solution and stochastic heuristic searching strategies suffer from low searching efficiency. Therefore, in this paper, we propose a global-local searching enhanced genetic algorithm (GL-SEGA). By applying the generalized opposition-based learning mechanism, GL-SEGA can efficiently explore the global solution space. By using the trust-region-reflective method to perform the local search, the GL-SEGA can improve the accuracy and convergence in its local exploitations. Field measurements and manufactory datasheets are used to test and validate the accuracy and robustness of the GL-SEGA algorithm.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>battery model ; ENERGY STORAGE ; genetic algorithm ; opposition based learning ; parameterization ; trust-region-reflective</subject><ispartof>IEEE transactions on smart grid, 2019-11, Vol.11 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000316339925 ; 0000000345169208 ; 0000000301250653 ; 0000000218121885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2329512$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Fuhong</creatorcontrib><creatorcontrib>Yu, Hui</creatorcontrib><creatorcontrib>Long, Qian</creatorcontrib><creatorcontrib>Zeng, Wente</creatorcontrib><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><title>Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications</title><title>IEEE transactions on smart grid</title><description>Here, this paper presents a novel battery model parameterization method using actual field measurement and manufacturer datasheet for real-time hardware-in-the-loop (HIL) applications. It is critical that real-time HIL models can accurately reproduce field test results so that tests can be conducted on HIL testbeds instead of in the field. In the past, numerical heuristic optimization algorithms were often used to derive parameters for battery models. However, the deterministic algorithms often reach a locally optimal solution and stochastic heuristic searching strategies suffer from low searching efficiency. Therefore, in this paper, we propose a global-local searching enhanced genetic algorithm (GL-SEGA). By applying the generalized opposition-based learning mechanism, GL-SEGA can efficiently explore the global solution space. By using the trust-region-reflective method to perform the local search, the GL-SEGA can improve the accuracy and convergence in its local exploitations. Field measurements and manufactory datasheets are used to test and validate the accuracy and robustness of the GL-SEGA algorithm.</description><subject>battery model</subject><subject>ENERGY STORAGE</subject><subject>genetic algorithm</subject><subject>opposition based learning</subject><subject>parameterization</subject><subject>trust-region-reflective</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjM2KwkAQhAdZQVl9h8Z7wGRUyNFfFAyI6FmaSUdHJjNhuj3o0xuWxbN1qeKrojqqn-aTPNHjWfrzyVPdU0Pm-7iV1nqW5X3VLFCE4hOKUJKDA0asqQX2hWKDhzNbf4UC_aNCI49IEVYoyDciAfQlbCy5EgpCbsuavEAVIhwJXXKyNcF2t4d50zhr_g55oLoVOqbhv_-q0WZ9Wm6TwGIvbKyQuZngPRm5ZDrLp2mmvxq9AQwKTHI</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Xie, Fuhong</creator><creator>Yu, Hui</creator><creator>Long, Qian</creator><creator>Zeng, Wente</creator><creator>Lu, Ning</creator><general>IEEE</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000316339925</orcidid><orcidid>https://orcid.org/0000000345169208</orcidid><orcidid>https://orcid.org/0000000301250653</orcidid><orcidid>https://orcid.org/0000000218121885</orcidid></search><sort><creationdate>20191115</creationdate><title>Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications</title><author>Xie, Fuhong ; Yu, Hui ; Long, Qian ; Zeng, Wente ; Lu, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23295123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>battery model</topic><topic>ENERGY STORAGE</topic><topic>genetic algorithm</topic><topic>opposition based learning</topic><topic>parameterization</topic><topic>trust-region-reflective</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Fuhong</creatorcontrib><creatorcontrib>Yu, Hui</creatorcontrib><creatorcontrib>Long, Qian</creatorcontrib><creatorcontrib>Zeng, Wente</creatorcontrib><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Fuhong</au><au>Yu, Hui</au><au>Long, Qian</au><au>Zeng, Wente</au><au>Lu, Ning</au><aucorp>North Carolina State University, Raleigh, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications</atitle><jtitle>IEEE transactions on smart grid</jtitle><date>2019-11-15</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><issn>1949-3053</issn><eissn>1949-3061</eissn><abstract>Here, this paper presents a novel battery model parameterization method using actual field measurement and manufacturer datasheet for real-time hardware-in-the-loop (HIL) applications. It is critical that real-time HIL models can accurately reproduce field test results so that tests can be conducted on HIL testbeds instead of in the field. In the past, numerical heuristic optimization algorithms were often used to derive parameters for battery models. However, the deterministic algorithms often reach a locally optimal solution and stochastic heuristic searching strategies suffer from low searching efficiency. Therefore, in this paper, we propose a global-local searching enhanced genetic algorithm (GL-SEGA). By applying the generalized opposition-based learning mechanism, GL-SEGA can efficiently explore the global solution space. By using the trust-region-reflective method to perform the local search, the GL-SEGA can improve the accuracy and convergence in its local exploitations. Field measurements and manufactory datasheets are used to test and validate the accuracy and robustness of the GL-SEGA algorithm.</abstract><cop>United States</cop><pub>IEEE</pub><orcidid>https://orcid.org/0000000316339925</orcidid><orcidid>https://orcid.org/0000000345169208</orcidid><orcidid>https://orcid.org/0000000301250653</orcidid><orcidid>https://orcid.org/0000000218121885</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2019-11, Vol.11 (3)
issn 1949-3053
1949-3061
language eng
recordid cdi_osti_scitechconnect_2329512
source IEEE Xplore
subjects battery model
ENERGY STORAGE
genetic algorithm
opposition based learning
parameterization
trust-region-reflective
title Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Battery%20Model%20Parameterization%20Using%20Manufacturer%20Datasheet%20and%20Field%20Measurement%20for%20Real-Time%20HIL%20Applications&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Xie,%20Fuhong&rft.aucorp=North%20Carolina%20State%20University,%20Raleigh,%20NC%20(United%20States)&rft.date=2019-11-15&rft.volume=11&rft.issue=3&rft.issn=1949-3053&rft.eissn=1949-3061&rft_id=info:doi/&rft_dat=%3Costi%3E2329512%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true