Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications
Here, this paper presents a novel battery model parameterization method using actual field measurement and manufacturer datasheet for real-time hardware-in-the-loop (HIL) applications. It is critical that real-time HIL models can accurately reproduce field test results so that tests can be conducted...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2019-11, Vol.11 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, this paper presents a novel battery model parameterization method using actual field measurement and manufacturer datasheet for real-time hardware-in-the-loop (HIL) applications. It is critical that real-time HIL models can accurately reproduce field test results so that tests can be conducted on HIL testbeds instead of in the field. In the past, numerical heuristic optimization algorithms were often used to derive parameters for battery models. However, the deterministic algorithms often reach a locally optimal solution and stochastic heuristic searching strategies suffer from low searching efficiency. Therefore, in this paper, we propose a global-local searching enhanced genetic algorithm (GL-SEGA). By applying the generalized opposition-based learning mechanism, GL-SEGA can efficiently explore the global solution space. By using the trust-region-reflective method to perform the local search, the GL-SEGA can improve the accuracy and convergence in its local exploitations. Field measurements and manufactory datasheets are used to test and validate the accuracy and robustness of the GL-SEGA algorithm. |
---|---|
ISSN: | 1949-3053 1949-3061 |