Triplet-Induced Singlet Oxygen Photobleaches Near-Infrared Dye-Sensitized Upconversion Nanosystems

The rapid photobleaching of near-infrared (NIR) dye-sensitized upconversion nanosystems is one of the crucial problems that has blocked their technological applications. Uncovering the photophysical and photochemical pathways of NIR dyes would help to elucidate the photobleaching mechanism and there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-08, Vol.23 (15), p.7001-7007
Hauptverfasser: Wang, Xindong, Jiang, Chang, Wang, Zeming, Cohen, Bruce E., Chan, Emory M., Chen, Guanying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid photobleaching of near-infrared (NIR) dye-sensitized upconversion nanosystems is one of the crucial problems that has blocked their technological applications. Uncovering the photophysical and photochemical pathways of NIR dyes would help to elucidate the photobleaching mechanism and thereby improve the photostability of the system. Here we investigate the triplet dynamics of NIR dyes and their interaction with triplet oxygen in the typically investigated IR806-sensitized upconversion nanoparticle (UCNP) nanosystem. Low-temperature fluorescence at 77 K provides direct proof of the generation of singlet oxygen (1O2) under 808 nm laser irradiation. Mass spectrometry indicates that all three double bonds in the structure of IR806 can be broken in the photochemical process. Coupling IR806 to the surface of UCNPs can accelerate its triplet dynamics, thus producing more 1O2 to photocleave IR806. Importantly, we find that the addition of β-carotene can scavenge the generated 1O2, thereby providing a simple method to effectively inhibit photobleaching.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c01671