Two-Step Solid-State Synthesis of Ternary Nitride Materials

Ternary nitride materials hold promise for many optical, electronic, and refractory applications; yet, their preparation via solid-state synthesis remains challenging. Often, high pressures or reactive gases are used to manipulate the effective chemical potential of nitrogen, yet these strategies re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS materials letters 2021-11, Vol.3 (12)
Hauptverfasser: Todd, Paul K., Fallon, M. Jewels, Neilson, James R., Zakutayev, Andriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ternary nitride materials hold promise for many optical, electronic, and refractory applications; yet, their preparation via solid-state synthesis remains challenging. Often, high pressures or reactive gases are used to manipulate the effective chemical potential of nitrogen, yet these strategies require specialized equipment. Here, we report on a simple two-step synthesis using ion-exchange reactions that yield rocksalt-derived MgZrN2 and Mg2NbN3, as well as layered MgMoN2. All three compounds show almost temperature-independent and weak paramagnetic responses to an applied magnetic field at cryogenic temperatures, indicating phase-pure products. The key to synthesizing these ternary materials is an initial low-temperature step (300-450 degrees C) to promote Mg-M-N nucleation. The intermediates then are annealed (800-900 degrees C) to grow crystalline domains of the ternary product. Calorimetry experiments reveal that initial reaction temperatures are determined by phase transitions of reaction precursors, whereas heating directly to high temperatures results in decomposition. These two-step reactions provide a rational guide to material discovery of other bulk ternary nitrides.
ISSN:2639-4979
2639-4979