Ion and Hydrodynamic Translucency in 1D van der Waals Heterostructured Boron-Nitride Single-Walled Carbon Nanotubes

An unresolved challenge in nanofluidics is tuning ion selectivity and hydrodynamic transport in pores, particularly for those with diameters larger than a nanometer. In contrast to conventional strategies that focus on changing surface functionalization or confinement degree by varying the radial di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-01, Vol.18 (1), p.355-363
Hauptverfasser: Cetindag, Semih, Park, Sei Jin, Buchsbaum, Steven F., Zheng, Yongjia, Liu, Ming, Wang, Shuhui, Xiang, Rong, Maruyama, Shigeo, Fornasiero, Francesco, Shan, Jerry W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An unresolved challenge in nanofluidics is tuning ion selectivity and hydrodynamic transport in pores, particularly for those with diameters larger than a nanometer. In contrast to conventional strategies that focus on changing surface functionalization or confinement degree by varying the radial dimension of the pores, we explore a unique approach for manipulating ion selectivity and hydrodynamic flow enhancement by externally coating single-walled carbon nanotubes (SWCNTs) with a few layers of hexagonal boron nitride (h-BN). For van der Waals heterostructured BN-SWCNTs, we observed a 9-fold increase in cation selectivity for K+ versus Cl– compared to pristine SWCNTs of the same 2.2 nm diameter, while hydrodynamic slip lengths decreased by more than an order of magnitude. These results suggest that the single-layer graphene inner surface may be translucent to charge-regulation and hydrodynamic-slip effects arising from h-BN on the outside of the SWCNT. Such 1D heterostructures could serve as synthetic platforms with tunable properties for exploring distinct nanofluidic phenomena and their potential applications.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.3c07282