Ultrafast Charge Transfer Cascade in a Mixed-Dimensionality Nanoscale Trilayer
Innovation in optoelectronic semiconductor devices is driven by a fundamental understanding of how to move charges and/or excitons (electron–hole pairs) in specified directions for doing useful work, e.g., for making fuels or electricity. The diverse and tunable electronic and optical properties of...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-03, Vol.18 (11), p.8190-8198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Innovation in optoelectronic semiconductor devices is driven by a fundamental understanding of how to move charges and/or excitons (electron–hole pairs) in specified directions for doing useful work, e.g., for making fuels or electricity. The diverse and tunable electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) and one-dimensional (1D) semiconducting single-walled carbon nanotubes (s-SWCNTs) make them good quantum confined model systems for fundamental studies of charge and exciton transfer across heterointerfaces. Here we demonstrate a mixed-dimensionality 2D/1D/2D MoS2/SWCNT/WSe2 heterotrilayer that enables ultrafast photoinduced exciton dissociation, followed by charge diffusion and slow recombination. Importantly, the heterotrilayer serves to double charge carrier yield relative to a MoS2/SWCNT heterobilayer and also demonstrates the ability of the separated charges to overcome interlayer exciton binding energies to diffuse from one TMDC/SWCNT interface to the other 2D/1D interface, resulting in Coulombically unbound charges. Interestingly, the heterotrilayer also appears to enable efficient hole transfer from SWCNTs to WSe2, which is not observed in the identically prepared WSe2/SWCNT heterobilayer, suggesting that increasing the complexity of nanoscale trilayers may modify dynamic pathways. Our work suggests ”mixed-dimensionality” TMDC/SWCNT based heterotrilayers as both interesting model systems for mechanistic studies of carrier dynamics at nanoscale heterointerfaces and for potential applications in advanced optoelectronic systems. |
---|---|
ISSN: | 1936-0851 1936-086X 1936-086X |
DOI: | 10.1021/acsnano.3c12179 |