Restoring the discontinuous heat equation source using sparse boundary data and dynamic sensors

Abstract This study focuses on addressing the inverse source problem associated with the parabolic equation. We rely on sparse boundary flux data as our measurements, which are acquired from a restricted section of the boundary. While it has been established that utilizing sparse boundary flux data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2024-03, Vol.40 (4)
Hauptverfasser: Lin, Guang, Ou, Na, Zhang, Zecheng, Zhang, Zhidong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This study focuses on addressing the inverse source problem associated with the parabolic equation. We rely on sparse boundary flux data as our measurements, which are acquired from a restricted section of the boundary. While it has been established that utilizing sparse boundary flux data can enable source recovery, the presence of a limited number of observation sensors poses a challenge for accurately tracing the inverse quantity of interest. To overcome this limitation, we introduce a sampling algorithm grounded in Langevin dynamics that incorporates dynamic sensors to capture the flux information. Furthermore, we propose and discuss two distinct dynamic sensor migration strategies. Remarkably, our findings demonstrate that even with only two observation sensors at our disposal, it remains feasible to successfully reconstruct the high-dimensional unknown parameters.
ISSN:0266-5611
1361-6420