BMP2/Smad signaling pathway is involved in the inhibition function of fibroblast growth factor 21 on vascular calcification
Vascular calcification is extremely common and associated with major adverse cardiovascular events. Fibroblast growth factor (FGF) 21 has been identified as a potent metabolic regulator and a protector of the cardiovascular system. In this study, we aimed to investigate the effect of FGF21 on calcif...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2018-09, Vol.503 (2), p.930-937 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vascular calcification is extremely common and associated with major adverse cardiovascular events. Fibroblast growth factor (FGF) 21 has been identified as a potent metabolic regulator and a protector of the cardiovascular system. In this study, we aimed to investigate the effect of FGF21 on calcification of vascular smooth muscle cell (VSMC) and its mechanism. FGF21 inhibited beta-glycerophosphate (BGP) induced mineralization in VSMCs as determined by calcium concentration and Alizarin Red S. FGF21 suppressed BGP-induced BMP2/Smad signaling pathway components as well as osteoblast differentiation markers. FGF21 and Noggin could synergistically inhibit BGP-induced BMP2/Smad pathway expressions and calcification. Taken together, FGF21 inhibits vascular calcification in vitro by modulating BMP2/Smad signaling pathway. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2018.06.098 |