A water-soluble precursor for efficient silica polymerization by silicateins

Silicateins, the spicule-forming proteins from marine demosponges capable to polymerize silica, are popular objects of biomineralization studies due to their ability to form particles varied in shape and composition under physiological conditions. Despite the occurrence of the many approaches to nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2018-01, Vol.495 (2), p.2066-2070
Hauptverfasser: Povarova, Natalia V., Markina, Nadezda M., Baranov, Mikhail S., Barinov, Nikolay A., Klinov, Dmitry V., Kozhemyako, Valery B., Lukyanov, Konstantin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicateins, the spicule-forming proteins from marine demosponges capable to polymerize silica, are popular objects of biomineralization studies due to their ability to form particles varied in shape and composition under physiological conditions. Despite the occurrence of the many approaches to nanomaterial synthesis using silicateins, biochemical properties of this protein family are poorly characterized. The main reason for this is that tetraethyl orthosilicate (TEOS), the commonly used silica acid precursor, is almost insoluble in water and thus is poorly available for the protein. To solve this problem, we synthesized new water-soluble silica precursor, tetra(glycerol)orthosilicate (TGS), and characterized biochemical properties of the silicatein A1 from marine sponge Latrunculia oparinae. Compared to TEOS, TGS ensured much greater activity of silicatein and was less toxic for the mammalian cell culture. We evaluated optimum conditions for the enzyme - pH range, temperature and TGS concentration. We concluded that TGS is a useful silica acid precursor that can be used for silica particles synthesis and in vivo applications. •New water-soluble silica acid precursor was suggested.•New precursor was highly effective with silicatein A1.•Optimal conditions for the silicatein activity were determined.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2017.12.075