Loss of circadian protein TIMELESS accelerates the progression of cellular senescence

TIMELESS protein is known to be essential for normal circadian rhythms. Aging is a deleterious process which affects all the physiological functions of complex organisms including the circadian rhythms. The circadian aging may produce disorganization among the circadian rhythms, arrhythmicity and ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2018-09, Vol.503 (4), p.2784-2791
Hauptverfasser: Shen, Xiaomeng, Li, Mingzhe, Mao, Zebin, Yu, Wenhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TIMELESS protein is known to be essential for normal circadian rhythms. Aging is a deleterious process which affects all the physiological functions of complex organisms including the circadian rhythms. The circadian aging may produce disorganization among the circadian rhythms, arrhythmicity and even, disconnection from the environment, resulting in a detrimental situation to the organism. However, the role of circadian genes on the aging process is poorly understood. In present study, we found TIMELESS was down-regulated in cellular senescence, and further research indicated E2F1 bound to the promotor of TIMELESS and regulated its expression in cellular senescence. Knockdown of TIMELESS accelerated cellular senescence induced by ectopic expression of RasV12, and overexpression of TIMELESS delayed this kind onset of senescence. Meanwhile, micrococcal nuclease assays proved depletion of TIMELESS exacerbated genomic instability at the onset of senescence. Together, our data reveal that TIMELESS plays a role in OIS, which is associated with genome stability changing. •TIMELESS is down-regulated in cellular senescence.•E2F1 regulates TIMELESS expression during OIS.•Knockdown of TIMELESS accelerates OIS and overexpression of TIMELESS delays OIS.•TIMELESS is involved in the maintenance of genomic stability during OIS.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2018.08.040