ALESQP: An Augmented Lagrangian Equality-Constrained SQP Method for Optimization with General Constraints
Here we present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproble...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2023-01, Vol.33 (1), p.237-266 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | 1 |
container_start_page | 237 |
container_title | SIAM journal on optimization |
container_volume | 33 |
creator | Antil, Harbir Kouri, Drew P. Ridzal, Denis |
description | Here we present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear solvers, and is suitable for large-scale applications. A key feature of ALESQP is a constraint decomposition strategy that allows it to exploit problem-specific variable scalings and inner products. We analyze convergence of ALESQP under different assumptions. We show that strong accumulation points are stationary. Consequently, in finite dimensions ALESQP converges to a stationary point. In infinite dimensions we establish that weak accumulation points are feasible in many practical situations. Under additional assumptions we show that weak accumulation points are stationary. We present several infinite-dimensional examples where ALESQP shows remarkable discretization-independent performance in all of its iterative components, requiring a modest number of iterations to meet constraint tolerances at the level of machine precision. Also, we demonstrate a fully matrix-free solution of an infinite-dimensional problem with nonlinear inequality constraints. |
doi_str_mv | 10.1137/20M1378399 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2311683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1137_20M1378399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-9327451d3a10f8a07c1b7c51d58c0e3c6b30db37f59429c883dbf2145f11ddcb3</originalsourceid><addsrcrecordid>eNpFUEtLAzEYDKJgrV78BcGjsJov2UfibSm1CluqqOclm03aSJvUJEXqr3eLoqcZ5nUYhC6B3ACw6paS-QCcCXGERkBEkVXAxfGBFzQrKctP0VmM74QQLko-QrZupi_PT3e4drjeLTfaJd3jRi6DdEsrHZ5-7OTapn028S6mIK0b_KGB5zqtfI-ND3ixTXZjv2Sy3uFPm1Z4pp0Oco3_SimeoxMj11Ff_OIYvd1PXycPWbOYPU7qJlMUqpQJRqu8gJ5JIIZLUinoKjUIBVdEM1V2jPQdq0whcioU56zvDIW8MAB9rzo2Rlc_uz4m20Zlk1Yr5Z3TKrWUAZScDaHrn5AKPsagTbsNdiPDvgXSHp5s_59k31yLZX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ALESQP: An Augmented Lagrangian Equality-Constrained SQP Method for Optimization with General Constraints</title><source>SIAM Journals Online</source><creator>Antil, Harbir ; Kouri, Drew P. ; Ridzal, Denis</creator><creatorcontrib>Antil, Harbir ; Kouri, Drew P. ; Ridzal, Denis ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Here we present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear solvers, and is suitable for large-scale applications. A key feature of ALESQP is a constraint decomposition strategy that allows it to exploit problem-specific variable scalings and inner products. We analyze convergence of ALESQP under different assumptions. We show that strong accumulation points are stationary. Consequently, in finite dimensions ALESQP converges to a stationary point. In infinite dimensions we establish that weak accumulation points are feasible in many practical situations. Under additional assumptions we show that weak accumulation points are stationary. We present several infinite-dimensional examples where ALESQP shows remarkable discretization-independent performance in all of its iterative components, requiring a modest number of iterations to meet constraint tolerances at the level of machine precision. Also, we demonstrate a fully matrix-free solution of an infinite-dimensional problem with nonlinear inequality constraints.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/20M1378399</identifier><language>eng</language><publisher>United States: Society for Industrial and Applied Mathematics (SIAM)</publisher><subject>ALESQP ; augmented Lagrangian ; composite step trust-region method ; constraint decomposition ; convergence analysis ; MATHEMATICS AND COMPUTING ; nonlinear constraints ; SQQP</subject><ispartof>SIAM journal on optimization, 2023-01, Vol.33 (1), p.237-266</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-9327451d3a10f8a07c1b7c51d58c0e3c6b30db37f59429c883dbf2145f11ddcb3</cites><orcidid>0000-0002-6641-1449 ; 0000-0002-7079-3195 ; 0000000270793195 ; 0000000266411449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,3188,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2311683$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Antil, Harbir</creatorcontrib><creatorcontrib>Kouri, Drew P.</creatorcontrib><creatorcontrib>Ridzal, Denis</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>ALESQP: An Augmented Lagrangian Equality-Constrained SQP Method for Optimization with General Constraints</title><title>SIAM journal on optimization</title><description>Here we present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear solvers, and is suitable for large-scale applications. A key feature of ALESQP is a constraint decomposition strategy that allows it to exploit problem-specific variable scalings and inner products. We analyze convergence of ALESQP under different assumptions. We show that strong accumulation points are stationary. Consequently, in finite dimensions ALESQP converges to a stationary point. In infinite dimensions we establish that weak accumulation points are feasible in many practical situations. Under additional assumptions we show that weak accumulation points are stationary. We present several infinite-dimensional examples where ALESQP shows remarkable discretization-independent performance in all of its iterative components, requiring a modest number of iterations to meet constraint tolerances at the level of machine precision. Also, we demonstrate a fully matrix-free solution of an infinite-dimensional problem with nonlinear inequality constraints.</description><subject>ALESQP</subject><subject>augmented Lagrangian</subject><subject>composite step trust-region method</subject><subject>constraint decomposition</subject><subject>convergence analysis</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>nonlinear constraints</subject><subject>SQQP</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFUEtLAzEYDKJgrV78BcGjsJov2UfibSm1CluqqOclm03aSJvUJEXqr3eLoqcZ5nUYhC6B3ACw6paS-QCcCXGERkBEkVXAxfGBFzQrKctP0VmM74QQLko-QrZupi_PT3e4drjeLTfaJd3jRi6DdEsrHZ5-7OTapn028S6mIK0b_KGB5zqtfI-ND3ixTXZjv2Sy3uFPm1Z4pp0Oco3_SimeoxMj11Ff_OIYvd1PXycPWbOYPU7qJlMUqpQJRqu8gJ5JIIZLUinoKjUIBVdEM1V2jPQdq0whcioU56zvDIW8MAB9rzo2Rlc_uz4m20Zlk1Yr5Z3TKrWUAZScDaHrn5AKPsagTbsNdiPDvgXSHp5s_59k31yLZX8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Antil, Harbir</creator><creator>Kouri, Drew P.</creator><creator>Ridzal, Denis</creator><general>Society for Industrial and Applied Mathematics (SIAM)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6641-1449</orcidid><orcidid>https://orcid.org/0000-0002-7079-3195</orcidid><orcidid>https://orcid.org/0000000270793195</orcidid><orcidid>https://orcid.org/0000000266411449</orcidid></search><sort><creationdate>20230101</creationdate><title>ALESQP: An Augmented Lagrangian Equality-Constrained SQP Method for Optimization with General Constraints</title><author>Antil, Harbir ; Kouri, Drew P. ; Ridzal, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-9327451d3a10f8a07c1b7c51d58c0e3c6b30db37f59429c883dbf2145f11ddcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ALESQP</topic><topic>augmented Lagrangian</topic><topic>composite step trust-region method</topic><topic>constraint decomposition</topic><topic>convergence analysis</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>nonlinear constraints</topic><topic>SQQP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antil, Harbir</creatorcontrib><creatorcontrib>Kouri, Drew P.</creatorcontrib><creatorcontrib>Ridzal, Denis</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antil, Harbir</au><au>Kouri, Drew P.</au><au>Ridzal, Denis</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ALESQP: An Augmented Lagrangian Equality-Constrained SQP Method for Optimization with General Constraints</atitle><jtitle>SIAM journal on optimization</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>237</spage><epage>266</epage><pages>237-266</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>Here we present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear solvers, and is suitable for large-scale applications. A key feature of ALESQP is a constraint decomposition strategy that allows it to exploit problem-specific variable scalings and inner products. We analyze convergence of ALESQP under different assumptions. We show that strong accumulation points are stationary. Consequently, in finite dimensions ALESQP converges to a stationary point. In infinite dimensions we establish that weak accumulation points are feasible in many practical situations. Under additional assumptions we show that weak accumulation points are stationary. We present several infinite-dimensional examples where ALESQP shows remarkable discretization-independent performance in all of its iterative components, requiring a modest number of iterations to meet constraint tolerances at the level of machine precision. Also, we demonstrate a fully matrix-free solution of an infinite-dimensional problem with nonlinear inequality constraints.</abstract><cop>United States</cop><pub>Society for Industrial and Applied Mathematics (SIAM)</pub><doi>10.1137/20M1378399</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6641-1449</orcidid><orcidid>https://orcid.org/0000-0002-7079-3195</orcidid><orcidid>https://orcid.org/0000000270793195</orcidid><orcidid>https://orcid.org/0000000266411449</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-6234 |
ispartof | SIAM journal on optimization, 2023-01, Vol.33 (1), p.237-266 |
issn | 1052-6234 1095-7189 |
language | eng |
recordid | cdi_osti_scitechconnect_2311683 |
source | SIAM Journals Online |
subjects | ALESQP augmented Lagrangian composite step trust-region method constraint decomposition convergence analysis MATHEMATICS AND COMPUTING nonlinear constraints SQQP |
title | ALESQP: An Augmented Lagrangian Equality-Constrained SQP Method for Optimization with General Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ALESQP:%20An%20Augmented%20Lagrangian%20Equality-Constrained%20SQP%20Method%20for%20Optimization%20with%20General%20Constraints&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Antil,%20Harbir&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2023-01-01&rft.volume=33&rft.issue=1&rft.spage=237&rft.epage=266&rft.pages=237-266&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/20M1378399&rft_dat=%3Ccrossref_osti_%3E10_1137_20M1378399%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |