ALESQP: An Augmented Lagrangian Equality-Constrained SQP Method for Optimization with General Constraints

Here we present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2023-01, Vol.33 (1), p.237-266
Hauptverfasser: Antil, Harbir, Kouri, Drew P., Ridzal, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear solvers, and is suitable for large-scale applications. A key feature of ALESQP is a constraint decomposition strategy that allows it to exploit problem-specific variable scalings and inner products. We analyze convergence of ALESQP under different assumptions. We show that strong accumulation points are stationary. Consequently, in finite dimensions ALESQP converges to a stationary point. In infinite dimensions we establish that weak accumulation points are feasible in many practical situations. Under additional assumptions we show that weak accumulation points are stationary. We present several infinite-dimensional examples where ALESQP shows remarkable discretization-independent performance in all of its iterative components, requiring a modest number of iterations to meet constraint tolerances at the level of machine precision. Also, we demonstrate a fully matrix-free solution of an infinite-dimensional problem with nonlinear inequality constraints.
ISSN:1052-6234
1095-7189
DOI:10.1137/20M1378399