Swelling and permeability effects during propellant cookoff
Large rocket motors may violently explode when exposed to accidental fires. Even hot metal fragments from a nearby accident may penetrate the propellant and ultimately cause thermal ignition. A mechanistic understanding of heated propellants leading to thermal runaway is a major unsolved problem. He...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2023-07, Vol.256 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large rocket motors may violently explode when exposed to accidental fires. Even hot metal fragments from a nearby accident may penetrate the propellant and ultimately cause thermal ignition. A mechanistic understanding of heated propellants leading to thermal runaway is a major unsolved problem. Here we show that thermal ignition in propellants can be predicted using a universal cookoff model coupled to a micromechanics pressurization model. Our model predicts the time to thermal ignition in cookoff experiments with variable headspace volumes. Furthermore, we found that experiments with headspace volumes are more prone to deformation which distorts pores and causes increased permeability when the propellant expands into this headspace. Delayed ignition with larger headspace volume correlates with lower headspace pressures during decomposition. We found that our predictions matched experimental measurements best when the initial propellant was impermeable to gas flow rather than being permeable. Similar behavior is expected with other energetic materials with rubbery binders. Our model is validated using data from a separate laboratory. We also present an uncertainty analysis using Latin Hypercube Sampling (LHS) of thermal ignition caused by a steel fragment embedded in the propellant. |
---|---|
ISSN: | 0010-2180 1556-2921 |