Simple Approximation for the Ideal Reference State of Gases Adsorbed on Solid-State Surfaces
Reference states are useful as models for facilitating calculations of equilibrium constants, and they may also serve as standard states that are convenient for organizing and tabulating thermodynamic data; however, standard state conventions and appropriate reference states for adsorbed species hav...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2022-07, Vol.144 (28) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reference states are useful as models for facilitating calculations of equilibrium constants, and they may also serve as standard states that are convenient for organizing and tabulating thermodynamic data; however, standard state conventions and appropriate reference states for adsorbed species have received less attention than those for pure substances and solutes. Here, we compare seven choices of reference states for calculations of equilibrium constants and transition state theory rate constants for flat surfaces, in particular (1) an ideal 2D harmonic oscillator, (2) an ideal rigid-molecule harmonic oscillator, (3) an ideal 2D harmonic oscillator with separable surface modes, (4) a 2D ideal gas, (5) an ideal 2D hindered translator, (6) an ideal 2D hindered translator with lowest-order barriers, and (7) a simple ideal 2D hindered translator proposed in this work. The advantage of models 5–7 is that they can treat both mobile and localized adsorbates in a consistent way, whereas models 1–3 are only appropriate for localized adsorbates, and model 4 is only appropriate for a freely translating adsorbate. Furthermore, models 6 and 7 reduce the computational cost without the user having to calculate barrier heights for diffusion. An advantage of the simple ideal 2D hindered translator is that it has a physical high-temperature limit. We also propose a reference state for nonflat surfaces. Here, the user is encouraged to choose a reference state based on the appropriateness of the model and the practicality of the calculations. |
---|---|
ISSN: | 0002-7863 1520-5126 |